意见箱
恒创运营部门将仔细参阅您的意见和建议,必要时将通过预留邮箱与您保持联络。感谢您的支持!
意见/建议
提交建议

pandas - groupby 深入及数据清洗案例

来源:恒创科技 编辑:恒创科技编辑部
2022-08-22 14:40:29

数据的split-apply-聚合, 案例-缺失值-重采样-加权平均-线性回归

import pandas as pd 
import numpy as np
分割-apply-聚合大数据的MapReduce

The most general-purpose GroupBy method is apply, which is the subject of the rest of this section. As illustrated in Figure 10-2, apply splits the object being manipulated into pieces, invokes the passed function on each piece, and then attempts to concatenate the pieces together.

Returning to the tipping dataset from before, suppose you wanted to select the top five tip_pct values by group. First, write a function that selects the rows with the largest values in a particular column:


pandas - groupby 深入及数据清洗案例

tips = pd.read_csv('../examples/tips.csv')

tips.head(2)

total_bill

tip

smoker

day

time

size

0

16.99

1.01

No

Sun

Dinner

2

1

10.34

1.66

No

Sun

Dinner

3

tips['tip_pct'] = tips['tip'] / tips['total_bill']
def top(df, n=5, column='tip_pct'):
"""返回某列排序后后第n个元素"""
return df.sort_values(by=column)[-n:]

top(tips, n=6)

total_bill

tip

smoker

day

time

size

tip_pct

109

14.31

4.00

Yes

Sat

Dinner

2

0.279525

183

23.17

6.50

Yes

Sun

Dinner

4

0.280535

232

11.61

3.39

No

Sat

Dinner

2

0.291990

67

3.07

1.00

Yes

Sat

Dinner

1

0.325733

178

9.60

4.00

Yes

Sun

Dinner

2

0.416667

172

7.25

5.15

Yes

Sun

Dinner

2

0.710345

Now, if we group by smoker, say, and call apply with this function, we get the following:

"先按smoker分组, 然后组内调用top方法"
tips.groupby('smoker').apply(top)
'先按smoker分组, 然后组内调用top方法'

total_bill

tip

smoker

day

time

size

tip_pct

smoker

No

88

24.71

5.85

No

Thur

Lunch

2

0.236746

185

20.69

5.00

No

Sun

Dinner

5

0.241663

51

10.29

2.60

No

Sun

Dinner

2

0.252672

149

7.51

2.00

No

Thur

Lunch

2

0.266312

232

11.61

3.39

No

Sat

Dinner

2

0.291990

Yes

109

14.31

4.00

Yes

Sat

Dinner

2

0.279525

183

23.17

6.50

Yes

Sun

Dinner

4

0.280535

67

3.07

1.00

Yes

Sat

Dinner

1

0.325733

178

9.60

4.00

Yes

Sun

Dinner

2

0.416667

172

7.25

5.15

Yes

Sun

Dinner

2

0.710345

What has happened here? The top function is called on each row(类似RDD) group from the DataFrame, and then the results are glued together using pandas.concat, labeling the pieces with the group names. The result therefore has a hierarchical index whose inner level contains index values from the original DataFrame.

If you pass a function to apply that takes other arguments or keywords, you can pass these after the function:

tips.groupby(['smoker', 'day']).apply(top, n=1, column='total_bill')

total_bill

tip

smoker

day

time

size

tip_pct

smoker

day

No

Fri

94

22.75

3.25

No

Fri

Dinner

2

0.142857

Sat

212

48.33

9.00

No

Sat

Dinner

4

0.186220

Sun

156

48.17

5.00

No

Sun

Dinner

6

0.103799

Thur

142

41.19

5.00

No

Thur

Lunch

5

0.121389

Yes

Fri

95

40.17

4.73

Yes

Fri

Dinner

4

0.117750

Sat

170

50.81

10.00

Yes

Sat

Dinner

3

0.196812

Sun

182

45.35

3.50

Yes

Sun

Dinner

3

0.077178

Thur

197

43.11

5.00

Yes

Thur

Lunch

4

0.115982

Beyound these basic usage mechanics, getting the most out of apply may require some creativity. What occurs inside the function passed is up to you; it only needs to only return a pandas object or a scalar value. The rest of this chapter will mainly consist of examples showing you how to solve various using groupby.

可以自定义各种函数, 只要返回的是df, 然后, 又可以各种groupby..

You may recall that I earlier called describe on a GroupBy object:

result = tips.groupby('smoker')['tip_pct'].describe()

result

count

mean

std

min

25%

50%

75%

max

smoker

No

151.0

0.159328

0.039910

0.056797

0.136906

0.155625

0.185014

0.291990

Yes

93.0

0.163196

0.085119

0.035638

0.106771

0.153846

0.195059

0.710345

result.unstack('smoker')
       smoker
count No 151.000000
Yes 93.000000
mean No 0.159328
Yes 0.163196
std No 0.039910
Yes 0.085119
min No 0.056797
Yes 0.035638
25% No 0.136906
Yes 0.106771
50% No 0.155625
Yes 0.153846
75% No 0.185014
Yes 0.195059
max No 0.291990
Yes 0.710345
dtype: float64

Inside GroupBy, when you invoke a method like describe, it's actually just a shortcut for:

f = lambda x: x.describe()

grouped.apply(f)
过滤分组键group_keys=False

In the preceding examples, you see that the resulting object has a hierarchical index formed from the group keys along with the indexes of each piece of the original object. You can disable this by passing group_keys=False to groupby.

tips.groupby('smoker', group_keys=False).apply(top)

total_bill

tip

smoker

day

time

size

tip_pct

88

24.71

5.85

No

Thur

Lunch

2

0.236746

185

20.69

5.00

No

Sun

Dinner

5

0.241663

51

10.29

2.60

No

Sun

Dinner

2

0.252672

149

7.51

2.00

No

Thur

Lunch

2

0.266312

232

11.61

3.39

No

Sat

Dinner

2

0.291990

109

14.31

4.00

Yes

Sat

Dinner

2

0.279525

183

23.17

6.50

Yes

Sun

Dinner

4

0.280535

67

3.07

1.00

Yes

Sat

Dinner

1

0.325733

178

9.60

4.00

Yes

Sun

Dinner

2

0.416667

172

7.25

5.15

Yes

Sun

Dinner

2

0.710345

分位数和桶分析cut, qcut

As you may recall from Chapter8, pandas has some tool, in particular cut and qcut, for slicing data up into buckets with bins of your choosing or by sample quantiles. Combineing these functions with groupby makes it convenient to perform bucket or quantile analysis on a dataset. Consider a simple random dataset and equal-length bucket categorization using cut:

frame = pd.DataFrame({
'data1': np.random.randn(1000),
'data2': np.random.randn(1000)
})

quartiles = pd.cut(frame.data1, 4)

quartiles[:10]
0    (-1.672, 0.361]
1 (-1.672, 0.361]
2 (-1.672, 0.361]
3 (-1.672, 0.361]
4 (0.361, 2.395]
5 (-1.672, 0.361]
6 (-1.672, 0.361]
7 (0.361, 2.395]
8 (-1.672, 0.361]
9 (0.361, 2.395]
Name: data1, dtype: category
Categories (4, interval[float64]): [(-3.714, -1.672] < (-1.672, 0.361] < (0.361, 2.395] < (2.395, 4.429]]

The Categorical object returned by cut can be passed directly to groupby. So we could compute a set of statistics for the data2 column like so:

def get_stats(group):
return {'min': group.min(), 'max': group.max,
'count': group.count(), 'mean': group.mean()}


grouped = frame.data2.groupby(quartiles)

grouped.apply(get_stats).unstack()

count

max

mean

min

data1

(-3.714, -1.672]

49

<bound method Series.max of 25 -0.372893\n2...

-0.2432

-2.16709

(-1.672, 0.361]

601

<bound method Series.max of 0 0.861588\n1...

-0.0253114

-2.90659

(0.361, 2.395]

340

<bound method Series.max of 4 0.228388\n7...

0.024466

-3.14779

(2.395, 4.429]

10

<bound method Series.max of 201 -0.519746\n4...

-0.267874

-0.835444

Theses were equal-length buckets; to compute equal-size buckets based on sample quantiles, use qcut.(等长度的'桶'), I'll pass lable=false to just get quantile numbers:

grouping = pd.qcut(frame.data1, 10, labels=False)

grouped = frame.data2.groupby(grouping)

grouped.apply(get_stats).unstack()

count

max

mean

min

data1

0

100

<bound method Series.max of 11 2.804563\n2...

-0.069347

-2.25593

1

100

<bound method Series.max of 1 -0.195015\n2...

-0.0408363

-2.75307

2

100

<bound method Series.max of 6 -1.087337\n1...

-0.212456

-2.88498

3

100

<bound method Series.max of 5 0.120671\n1...

0.0688246

-2.82311

4

100

<bound method Series.max of 22 0.058132\n3...

0.0401668

-2.69601

5

100

<bound method Series.max of 0 0.861588\n3...

-0.12863

-2.90659

6

100

<bound method Series.max of 47 0.543961\n5...

0.108924

-3.14779

7

100

<bound method Series.max of 4 0.228388\n7...

0.0391474

-1.8324

8

100

<bound method Series.max of 9 0.303886\n1...

-0.00849982

-2.19997

9

100

<bound method Series.max of 23 0.246278\n3...

-0.0121871

-2.40748

Example 缺失值填充

When cleaning up missing data, in some cases you will replace data observations using dropna, but in others you may want to impute(归咎于) (fill in) the null(NA) values using a fixed value or some value derived(派生) from the data(cj.随机森林预测). fillna is the right tool to use; for example, here i fill in NA values with the mean.

s = pd.Series(np.random.randn(6))

s[::2] = np.nan # 每个就na

s
0         NaN
1 -0.661528
2 NaN
3 0.144512
4 NaN
5 1.096004
dtype: float64
"用均值填充"
s.fillna(s.mean())
'用均值填充'






0 0.192996
1 -0.661528
2 0.192996
3 0.144512
4 0.192996
5 1.096004
dtype: float64

Suppose you need the fill value to vary(变化) by group. One way to do this is to group the data and use apply with a function that calls fillna on each data chunk. Here is some sample data on US states divided into eastern and western regions:

states = ['Ohio', 'New York', 'Vermont', 'Florida',
'Oregon', 'Nevada', 'California', 'Idaho']

group_key = ['East'] * 4 + ['West'] * 4

data = pd.Series(np.random.randn(8), index=states)

data
Ohio          0.508352
New York -1.029373
Vermont -0.506223
Florida -0.128709
Oregon 0.445320
Nevada 2.064584
California -0.795793
Idaho -1.115522
dtype: float64

Note that the syntax ['East'] * 4 produces a list containing four copies of the elements in ['East
']. Adding lists together concatenates them.

Let's set some values in the data to be missing:

data[['Vermont', 'Nevada', 'Idaho']] = np.nan 

data
Ohio          0.508352
New York -1.029373
Vermont NaN
Florida -0.128709
Oregon 0.445320
Nevada NaN
California -0.795793
Idaho NaN
dtype: float64
data.groupby(group_key).mean()  # 默认忽略缺失值
East   -0.216577
West -0.175236
dtype: float64

We can fill the NA values using the group means like so:

fill_mean = lambda g: g.fillna(g.mean())

data.groupby(group_key).apply(fill_mean)
Ohio          0.508352
New York -1.029373
Vermont -0.216577
Florida -0.128709
Oregon 0.445320
Nevada -0.175236
California -0.795793
Idaho -0.175236
dtype: float64

In another case, you might have predifined fill values in your code that vary by group. Since the groups have a name attribute set internallh, we can use that:

fill_values = {'East': 0.5, 'West': -1}

fill_func = lambda g: g.fillna(fill_values[g.name])

data.groupby(group_key).apply(fill_func)
Ohio          0.508352
New York -1.029373
Vermont 0.500000
Florida -0.128709
Oregon 0.445320
Nevada -1.000000
California -0.795793
Idaho -1.000000
dtype: float64
Example: 随机采样

Suppose you wanted to draw a random sample(with or without replacement) from a large dataset for Monte Calo(蒙特卡洛) simulation purposes or some other application. There are a number of ways to perform the "draws"; here we use the sample method for Series.

To demonstrate, here's a way to construct a deck of English-style playing cards:

# Hearts, Spades, Clubs, Diamonds

suits = 'H S C D'.split()

card_val = (list(range(1, 11)) + [10]*3) * 4

base_names = ['A'] + list(range(2, 11)) + ['J', 'K', 'Q']

cards = []
for suit in ['H', 'S', 'C', 'D']:
cards.extend(str(num) + suit for num in base_names)

deck = pd.Series(card_val, index=cards)

So now we have a Series of lenght 52 whose index contains card names and values are the ones used in Blackjack and other games

deck[:13]
AH      1
2H 2
3H 3
4H 4
5H 5
6H 6
7H 7
8H 8
9H 9
10H 10
JH 10
KH 10
QH 10
dtype: int64

Now, based on what i said before, drawing a hand of five cards from the deck could be written as:

def draw(deck, n=5):
return deck.sample(n)

draw(deck)
3H     3
5C 5
JD 10
4H 4
JH 10
dtype: int64

Suppose you wanted two random cards from each suit. Because the suit is the last character of each card name, we can group based on this and use apply:

get_suit = lambda card: card[-1]  # last letter is suit

deck.groupby(get_suit).apply(draw, n=2)
C  3C      3
8C 8
D 4D 4
7D 7
H 4H 4
3H 3
S 2S 2
10S 10
dtype: int64

Alternatively, we could write:

deck.groupby(get_suit, group_keys=False).apply(draw, n=2)
KC     10
3C 3
9D 9
KD 10
9H 9
6H 6
10S 10
7S 7
dtype: int64
Example: 加权平均和相关

Under the split-combine paradigm of groupby, operations between columns in a DataFrame or two Series, such as a group weighted average, are posible. As an example, take this dataset containing group keys, values, and some weights:

df = pd.DataFrame({'category': ['a', 'a', 'a', 'a',
'b', 'b', 'b', 'b'],
'data': np.random.randn(8),
'weights': np.random.rand(8)})

df

category

data

weights

0

a

0.434777

0.486455

1

a

-2.414575

0.374778

2

a

-0.682643

0.651142

3

a

0.538472

0.238194

4

b

1.001960

0.724147

5

b

-2.006634

0.770404

6

b

0.162167

0.262188

7

b

0.924946

0.723322

The group weighted average by category would then be:

grouped = df.groupby('category')
get_wavg = lambda g: np.average(g['data'], weights=g['weights'])
grouped.apply(get_wavg)
category
a -0.576765
b -0.043870
dtype: float64

As another example, consider a financial dataset originally obtained from Yahoo! Finance containing end-of-day prices for a few stocks and the S&P 500 index.

close_px = pd.read_csv('../examples/stock_px_2.csv', 
parse_dates=True, index_col=0)

close_px.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2214 entries, 2003-01-02 to 2011-10-14
Data columns (total 4 columns):
AAPL 2214 non-null float64
MSFT 2214 non-null float64
XOM 2214 non-null float64
SPX 2214 non-null float64
dtypes: float64(4)
memory usage: 86.5 KB
close_px[-4:]  # 选取后4条记录

AAPL

MSFT

XOM

SPX

2011-10-11

400.29

27.00

76.27

1195.54

2011-10-12

402.19

26.96

77.16

1207.25

2011-10-13

408.43

27.18

76.37

1203.66

2011-10-14

422.00

27.27

78.11

1224.58

One task of interest might be to compute a DataFrame consisting of the yearly correlations of daily returns with SPX. As one way to do this, we first create a function that computes the pairwise correlation of each column with the 'SPX' column:

spx_corr = lambda x: x.corrwith(x['SPX'])

Next, we compute percent change on close_px using pct_change:

rets = close_px.pct_change().dropna()

Lastly, we group these percent changes by year, which can be extracted from each row label with a one-line function that returns the year attribute of each datetime label:

get_year = lambda x: x.year  

by_year = rets.groupby(get_year) # 函数作为分组的 key

by_year.apply(spx_corr)

AAPL

MSFT

XOM

SPX

2003

0.541124

0.745174

0.661265

1.0

2004

0.374283

0.588531

0.557742

1.0

2005

0.467540

0.562374

0.631010

1.0

2006

0.428267

0.406126

0.518514

1.0

2007

0.508118

0.658770

0.786264

1.0

2008

0.681434

0.804626

0.828303

1.0

2009

0.707103

0.654902

0.797921

1.0

2010

0.710105

0.730118

0.839057

1.0

2011

0.691931

0.800996

0.859975

1.0

You could also compute inter-column correlations. Here we compute the annual correlation between Apple and Microsoft:

by_year.apply(lambda g: g['AAPL'].corr(g['MSFT']))
2003    0.480868
2004 0.259024
2005 0.300093
2006 0.161735
2007 0.417738
2008 0.611901
2009 0.432738
2010 0.571946
2011 0.581987
dtype: float64
Example: 线性回归

In the same theme as the previous example, you can use groupby to perform more complex group-wise statistical analysis, as long as the function returns a pandas object or scalar value.
For example, i can define the following regress function, which executes an ordinary least squares(OLS) regression on each chunk of data:

import statsmodels.api as sm
def regress(data, yvar, xvars):
"""最小二乘"""
Y = data[yvar]
X = data[xvars]

X['intercept'] = 1
result = sm.OLS(Y, X).fit()

return result.params

Now, to run a yearly linear regression of AAPL on SPX return , execute:

%time by_year.apply(regress, 'AAPL', ['SPX'])
Wall time: 277 ms

SPX

intercept

2003

1.195406

0.000710

2004

1.363463

0.004201

2005

1.766415

0.003246

2006

1.645496

0.000080

2007

1.198761

0.003438

2008

0.968016

-0.001110

2009

0.879103

0.002954

2010

1.052608

0.001261

2011

0.806605

0.001514

耐心和恒心, 总会获得回报的.



上一篇: 租用美国服务器:潜在的风险与应对策略。 下一篇: Spring Security + Vue + Flowable 怎么玩?